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ABSTRACT

Generalized quadrangles 2 are studied in which s or ¢ is prime and Aut 2 has
rank 3 on points.

1. Imtroduction

A generalized quadrangle 2 of order (s, ¢) consists of a set of points and lines,
with each line on s + 1 points and each point on ¢ + 1 lines, such that two points
are on at most one line and a point not on a line is collinear with exactly one
point of the line. We will study the case where s or ¢ is prime and Aut 2 has
rank 3 on points.

THeEOREM 1.1. Let 2 be a generalized quadrangle of order (p, t) with p prime
and t > 1. Suppose G = Aut 2 has rank 3 on points. Then either t = p>—p — 1
and p* X |G|, or G=PSp(@4,p) or PTU(4,p) and 2 is one of the usual
quadrangles associated with these groups, or p =2, G = A and 2 is one of the
usual quadrangles associated with PS,(4,2).

A group G having a BN-pair whose Weyl group is Ds naturally acts as an
automorphism group of a generalized quadrangle of order (s, t) with s > 1 and
t > 1. Moreover, (1+ s)(1+¢)(1+ st)s’t* divides | G|. Thus, as an immediate
consequence of (1.1) we have:

CoroLLary 1.2.  Let G be a finite group having BN-pair and Weyl group Ds.
Suppose that |P: B|—1 is a prime p for some maximal parabolic subgroup P.
Then G has a normal subgroup H isomorphic to PSp(4, p) or PSU(4, p), with the
usual BN-pair induced on H.

1 This research was supported in part by NSF grant GP 37982X.
Received November 14, 1974
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COROLLARY 1.3. Let G be a rank 3 group having subdegrees 1, py, p> withp a
prime, p ¥ v8, (v,8) =1, r a power of p, r > 1 and either 1+ 8)r = yorp =2 and
8 = 1. Then G can be regarded as acting on the singular points of a symplectic or
orthogonal geometry over GF(p), or on the singular lines of a 4-dimensional
symplectic or unitary geometry over GF(p).

Corollary 1.3 is a consequence of (1.1) and Kantor [4]. Further consequences
of the preceding sort also follow from the latter paper. The present work
originated in an attempt to push the rather elementary methods of (4] somewhat
further. The proof of (1.1) requires little more than elementary group theory,
combined with results of Higman [1],{2], [3]. The case ¢t = p is especially simple;
for both this reason, and later convenience, it has been presented separately in
Section 4.

The basic idea is to take a Sylow p-subgroup P of G, and then see how both its
center and various point-and line-stabilizers in P must behave. The same
methods yield the following result; the details are left to the reader.

THEOREM 1.4. Let @ be a generalized quadrangle of order (s, p) with p prime
and s >1. Suppose G = Aut2 has rank 3 on points, p’| |G|, and either
s#p’~p—1orp*|G|. Then G = PSp(4,p) or PTU(4,p), and 2 is one of the
usual quadrangles associated with these groups.

We remark that there is a well-known quadrangle of order (3,5) for which
3’| Aut 2 | (see, e.g., Higman [2], p. 287); Aut 2 has rank 3 on points and rank 5
on lines.

Finally, we note that the methods presented here apply to other situations,
such as rank 4 automorphism groups of generalized hexagons of order (p, p) with
p prime.

2. Preliminary results

Let @ be a generalized quadrangle of order (s, t). If x is a point, I'(x ) denotes
the set of points y such that a line xy exists, x* = {x}UTI'(x), and A(x) is the
complement of x*. We call x and y joined or adjacent if xy exists; and dually
lines L and M are adjacent if L N M is a point.

H(x) will denote the set of elements of H = Aut 2 fixing each line on x, while
H(L) is the pointwise stabilizer of L.

LemMMA 2.1. Let Q be a generalized quadrangle of order (s, t).
(i) Suppose a subgroup H of Aut 2 fixes at least three points of some line and
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at least three lines through some point. If no fixed point H is joined to all others, and
no fixed line meets all others, then the set of fixed points and lines of H form a
sub-quadrangle of order (s',t') for some s'<s and t'=1.

(ii) If 2 has a proper subquadrangle of order (s,t'), then t = st'.

(i) *zsand s’ztifs>1 and t>1.

Proor. (i) is straightforward. To prove (ii) (which is due to Payne [6] and
Thas [7]), take x outside of the subquadrangle 2. Then each of the ¢ + 1 lines
through x meets 2, at most once. Counting in two ways the pairs (y, L) with
yE€L, x and y collinear, and y, L€ 2,, we find that ¢ +1)(¢'+1)=1+
(s +1)t'+ st (the latter being the number of lines of 2;). This implies that
t=st',

Finally, (iii) is Higman’s inequality [2].

The second part of the following transitivity-boosting lemma is probably

well-known; the proof of the first part has the same flavor as the one in Kantor

(4].

LemMmA 2.2. Suppose G = Aut 2 has rank 3 on points. Then
(i) G is 2-transitive on the lines through x; and
(i) If (s,t+1)=1 and y €l(x), then G,, is transitive on y* — xy.

Proor. (i) Let x € L. Then G, contains a Sylow p-subgroup P of G, for
each prime p |t It suffices to show that for each p and P, each orbit L'F of
lines # L on x has length divisible by 1, (the p-part of ¢).

Suppose | L'?|<t, for some such orbit. There exist points y € L —{x} and
y'€ L'—{x} whose P. =P, orbits have lengths <5, Thus, |Pr,, =
| Po|/s3>|P|/sit,, so | P*: P,,|<sit, =|A(y)|, for a Sylow p-subgroup P*=
Py, of G,. Since y'E€ A(y) and G, is transitive on A(y), this is impossible.

(i1) Since (|T'(x)|, [A(x)|) = (s (¢ + 1), s*t) = 5, each G,,-orbit on A(x) has length
divisible by s’t/s =|y*—xy|.

ReMARK. Note that the hypotheses of (2.2) guarantee that G, is 2-transitive
on L. What (2.2) says is that a second 2-transitive group is also always available.

LeMMA 2.3. The pointwise stabilizer G (x*) of x* is semiregular on A(x), and
|G(x9] |e

Proor. The first statement is (6.17) of Higman [2], and follows immediately
from (2.1i). To prove the second one, let M be a line not on x, and set
{y}=x*N M. Then each u € x* — xy is joined to some w € M —{y}, and hence
G ImM=EGEHY). = 1.
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THEOREM 2.4. (Higman [1].) Assume G = Aut 2 has rank 3 on points, and
s =t=|G(x")|. Then 2 is isomorphic to the usual quadrangle for Sp(4, s), and
G =PSp(4,s).

THEOREM 2.5. (Higman [3].) Assume G = Aut2 has rank 3 on points,
s=1t" and |G(x*)|=t Then 2 is isomorphic to the usual quadrangle for
PSU4,1t), and G = PSU(4,1).

LemMa 2.6. (Higman [2, (6.1)].) s*(1+ st)/(s +t) is an integer.

CoroLLARY 2.7. Suppose (s,t)=1, s>1 and t > 1.
(i) Ifs|tx1thent=s>-s—1.

() Ifs|t—3and 3|s—1 thent=2s+3.

(i) Ifs|t—2thent=5s+2.

Proor. We will prove (ii); (i) and (iii) are similar. By (2.6), s + ¢ |s*>—1. We
can write s’—1=a(s+1t) and t —3 = Bs for integers @ and B. Then —1=
3a (mods), so a =(s—1)/3(mods). Write @ =((s —1)/3)+sy. Then s*-1=
(((s —1)/3)+ sy)(s + t) implies that y =0 and 3(s + 1) = s + ¢, as required.

3. Hyperbolic lines

Let ¢ be any strongly regular graph with parameters n, k, [, A, u. For each
point x, I'(x) will denote the set of points joined to x, and A(x) the set of
points # x not joined to x. Write x* = {x} UT'(x). The line xy, x # y, is defined by
3.1 xy=MN{w*|x,yEwl= N{w*|wex* Ny}

This line is called singular if y € '(x) and hyperbolic if y € A(x).

LemMa 3.2. (Higman [2, p. 282].)

(i) Two adjacent points are on a unique singular line.

(i) Two non-adjacent points are on at most one hyperbolic line, and are on no
singular line, if 2 is the point-graph of a generalized quadrangle.

Consider the following hypothesis:

(H) Each hyperbolic line has h + 1 points, and two distinct lines meet at most
once.

This will be the case, for example, if (3.2ii) holds and Aut % is transitive on
pairs of non-adjacent points.
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LemMMa 3.3. Assume (H). Then the following hold.

(i)  x is on I/ h hyperbolic lines.

(i) There are nl/h(h + 1) hyperbolic lines.

(i) h|lk—-A-1.

(iv) Ifw € A(x)thenwisonl/h —(k — u + 1) hyperbolic lines missing x*.
(v)  There are I[I/h — (k — p +1)]/(h + 1) hyperbolic lines missing x*.

Proor. (i) and (ii) are easy. If y €I'(x) then y*NA(x) is a union of
hyperbolic lines with x removed; this implies (iii).

To prove (iv), note that w is joined to u points of I'(x). Let y be any of the
remaining k — u points of I'(x). If wy meets I'(x) at a second point y’ # y, then
by (H), y' € A(y) and wy = yy'. But now, y, y' € x* implies that yy’'C x*, and
hence that w € x™.

Thus, w is on exactly k — u hyperbolic lines meeting x*. By (i), this proves
(@iv).

Finally, count the pairs (w, L) with w € A(x)N L, L a hyperbolic line, and
L Nx*= ¢, in order to obtain (v).

CoroLLARY 3.4. If (H) holds, and Aut % is transitive on hyperbolic lines, then
each hyperbolic line misses exactly | —h(k — u +1) sets x*.

Proor. By (3.3), the desired number is
n-lll/h—(k—p+DJh +1)" - (nl/h(h +1))".

Lemma 3.5. If (H) and (3.2ii) hold, then
(i) x* contains s’t(t + 1)/h(h + 1) hyperbolic lines; and
(i) |G(x")| divides h.

PROOF.
(i) Count the pairs (y, H) with y € HCx"* and H a hyperbolic line.
(ii)) Higman [2, (6.17)].

4. The case s=t=p

Theorem 1.1 is particularly easy when s =t = p is prime. We may assume
p>2. Let P be a Sylow p-subgroup of G. Then P fixes some x and some
(singular) line L on x. Moreaver, P is transitive on L —{x}, A(x)and x*— L (by
(2.2)). Set Z=Z(P)N P(x)N P(L). Since p*>=|A(x)||| G|, Z#1.

Let w € A(x), and suppose P, # 1. Then P, = P(wy)if y € L NT(w). If now
Z is transitive on the lines # L on y, then P, = G(y*) and Higman’s result (2.4)
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applies. Assume next that Z = G(y). Then the transitivity of P shows that Z
fixes every line meeting L. Hence, Higman’s result (2.4) applies to the dual of 2
if G has rank 3 on lines. But by (2.2), if G does not have rank 3 on lines, then
| K? | = p® for a line K on w. This implies that | Px | = p?, so Px. # 1. Then, by
(2.1), the set of fixed points and lines of Pk. form a subquadrangle of order
(p, p), which is absurd.

Thus, we may assume |P|= p>. Then no nontrivial p-element can fix two
nonadjacent points. In particular, P(L) = P, is regular on x*— L. (Also, P is
regular on A(x), so G has rank 3 on lines.) Since | P(x)| = p?, we see that P(x)
has p + 1 subgroups of order p, each fixing a unique line on x pointwise. Hence,
by the Frattini argument, N(P(x)). is 2-transitive on these p + 1 subgroups, and
hence induces at least SL(2, p) on P(x).

Moreover, | Z | = p here, and Z = P(x) N P(L). Thus, Z = P(y) would again
permit (2.4) to be applied to the dual of 2. It follows as above that N(P(L)). is
2-transitive on the p +1 subgroups of order p of P(L), and induces at least
SL(2,p) on P(L).

In view of the action of N(P(x)). on P(x), there is a 2-element ¢t €
N(P(x)). N N(P(L)) which inverts P(x) and centralizes P(L)/Z. Then t nor-
malizes each of the p + 1 subgroups of P(x) corresponding to the lines on x, and
hence ¢t € G(x). Similarly, there is a 2-element t' € N(P(L)). N N(P(x)) which
inverts P(L) and centralizes P(x)/Z. By Sylow’s theorem, we may assume that
(LtY=N(P(x))N N(P(L)) is a 2-group.

Now tt’ centralizes Z and inverts P/Z and #’ fixes some line L, # L on x.
Then also 1’ fixes one of the p points of L, —{x}, and the transitivity of Z on
L,—{x} shows that ##' € G(L,). Dually, ' € G(y) for some y € L — {x}. (Recall
that Z is transitive on the lines # L on y.) Thus, (2.1i) implies that the set of fixed
points and lines of #' is a subquadrangle of order (p, p). This is ridiculous, and
the case s =¢ = p is completed.

5. The case s =p and p°| |G|

Let 2 and G be as in Theorem 1.1. Let P be a Sylow p-subgroup of G. Then
P fixes some point x. Set Z = Z(P).

It is easy to handle the case p =2 (since ¢ = p® by (2.1)). We may thus assume
p > 2. By Section 4, we may also assume p# t.

Throughout this section we will assume p*| |G |.

LemMa 5.1. t>p.
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PrOOF. Suppose ¢t <p. Then P =G(x). As |A(x)|=p?t, P.# 1 for some
w € A(x). Certainly, P, = P(wy)foreachy € x* N w*, By (2.1i), the set of fixed
points and lines of P, form a subquadrangle of order (p, t), which is absurd.

LemMA 5.2. plt

PrOOF. Suppose p ft By (2.1) and (5.1), p<t<p® Also, for some
w EA(x), P.#1 and P, is Sylow in G.,.

Consider first the possibility p | ¢ + 1. Here no nontrivial subgroup of P can fix
elementwise a subquadrangle of 9. For, by (2.1) such a quadrangle would have
order (p,t,) with pt,=t<p?and p|t,+1, so t; = p— 1. However, by (2.6) no
quadrangle of order (p,p —1) can exist.

On the other hand, | Px | = p® for one of the pt* lines K not on x. Then
P(K)#1, and we may assume w € K. Now P(K) fixes at least p lines L’ on x,
and at least p on w. Since w is joined to some point of L’ —{x}, this contradicts
(2.1) and the preceding paragraph.

From now on we may assume p 4 t+ 1. Then p fixes some line L on x.
Moreover, the set 2; of fixed points and lines of P, from a subquadrangle,
necessarily of order (p, t;) for some t, = 1. Here t, =t (mod p), while pt, =t < p?
by (2.1). Also, since P, is Sylow in G,., N(P,) is transitive on the ordered pairs
of non-adjacent points of 2,.

We claim that | P| = p°. For suppose | P|= p*. Then 1# P,, <P, for some
line L' on x. The set of fixed points and lines of P,; forms a subquadrangle
2,2 2, of 2 of order (p, t,) for some r.. By (2.1), p*n, < pt. < t < p?, which is
impossible.

Thus, |P|=p® and |P,|=p. But the transitivity of N(P,) implies that
p’| |N(P.)|. Hence P, = Z(P).

Since |x*~ L |=pt#0 (mod p?), | P.| = p? for some u € x*— L. Then P, is
not conjugate in G to any P,, so P, fixes no point of x* — xu. Thus, Z(P) fixes
xu. There are thus exactly t,+ 1 lines xu with | P(xu)|= p®. If v is any point of
x* not on any of these lines, then | v® | < pt <p, so P,#1 and Z(P) = C(P(xv))
implies that P(xv) fixes a second line on x pointwise, and hence determines a
subquadrangle of order (p, t,), say. But this time, p =t,, and this contradicts
2.1).

By (5.2), we now know P fixes some line L on x. Let 1, denote the p-part of 1.

Lemma 5.3. If p*t} divides | G |, then the conclusions of (1.1) hold.

ProoF. By (5.2),p|t Then|P|=p* and|P|=p®ift = p>. By 2.1),t =p>.
We have |A(x)| = p’t =0(modp®). Let w € A(x). Then p*=p*r =|w” | = p?,
so|w” |is p’t,. In particular, | P, | = t,. Note that P, = P(yw)if {y}= L N w".
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We claim that P, fixes no point of A(y). For otherwise, by (2.1) P, fixes
elementwise a subquadrangle of order (p, t,), where pt, =t = p® and p | t,. Thus,
t=p? so |P.|zp® Now t —t,<p? implies that, for some line M# L on x,
P, > P.#1. Then P, fixes more than p +1 lines through x; by (2.1), it
determines a subquadrangle of order (p, 1) with pt; =t = p* and ,>t,. This
contradiction proves our claim.

Thus, P. fixes only points of y*. Since w and y are arbitrary, Z = Z(P) fixes
each point of L.

Let u € x*— L. Since pt = p?, by (2.2) each P-orbit on x* — L has length pt,.
Thus, | P: P, | = pt,. Clearly, P, has an orbit # {xu} of lines K on u of length = ,.
Thus, | P: Px | =|P:Px | = Pt2, so Pc# 1.

We claim that all fixed lines of Px are adjacent to xu. For otherwise, by (2.1)
the set 2, of fixed points and lines of Pk is a subquadrangle of order (p, t;) (as
Py = P(xu) fixes at least p + 1 lines on x). Here p*= ¢ = pt, by (2.1), while p | ..
Thus, ¢t = p® and t,=p. By (2.1), Px must be semiregular on the ¢ —t, lines
through x it moves, so | Px | = p. Thus, | K” | = p*, so K* consists of all lines not
adjacent to L. Moreover, Np(Px) is transitive on K* N 2,, and hence (by
intersecting these lines with x ) alsoon (x* ~ L)N 2,. Since L can be any line of
2,, it follows that N(Px) has rank 3 on the dual of 2,. Moreover, p* 4 | N(Px )*|
since P% = 1. By Section 4, this is impossible, and our claim is proved.

Thus, Z = C(Px) must fix xu. As u € x*— L was arbitrary, we now have
Z=P(x)NP(L).

Let G(L*) denote the set of elements of G fixing every line adjacent to L.
Suppose that Z N G(L*)# 1. By (2.3) (applied to the dual of 2), | G(L")| |p.
Thus, G(L*)= Z. Clearly, G(L*)= G,. Set E ={(G(M*)|x € M). Then E <
G(x) is elementary abelian, and G, acts 2-transitively on the t+1>p+1
groups G(M*). In particular, | E | = p®. But GL(3, p) has no such 2-transitive
subgroup since ¢t +1<p*+p+1 (Mitchell [5]). Thus |E|[= p*. If now ¢ <p?
then | P| =z p®. Then | P, | = p?, so P, > P.x# 1 for some line K adjacent to yw.
(Note that | P, | Z| G ((yw)")|.) As usual, P.x determines a subquadrangle, and
(2.1) produces a contradiction. Thus, ¢t = p® so [xu”|= p> By (2.5), we may
assume that G does not have rank 3 on lines. Then | K” | = p*for each line K not
adjacent to L, so | P« | = p®. As usual, (2.1) implies that for w € K N A(x), the set
of fixed points and lines of P, form a quadrangle of order (p, p). Hence, again
by (2.1), |Pxw|=p, |Pc|=p? and hence |P|=p® Now |P:P(x)|=p?=
|xu”| =1t shows that no subgroup of P can fix exactly p + 1 lines on x, whereas
Py, is such a subgroup.

Thus, we may assume that Z N G(L*)=1, and (eventually) will derive a
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contradiction from this assumption. Since P is transitive on L —{x}, Z N P(y) =
1 for each y € L —{x}. Since P(L) is Sylow in G(L), we can find g € G,
such that P® = P(L) and P® is Sylow in G,.. Set W = Z% Then W = P(L).
Moreover, P, = P(L)= Co(W).

Recall that all fixed points of P, are in y*. Since P, fixes L and wy pointwise,
while N(P, ) is transitive on ordered pairs of non-adjacent fixed points of P,, we
must have |[N: P, |=Z|L —{y}|-|wy —{y}| = p?, where N = Np(P.,).

We can now prove t = p°. For suppose t < p*. By (2.1), P, is semiregular on
the lines # L through x,so | P, | = p and | P| = p*. In particular, N = Cp(P.) and
| P: N|=p. Also, P, Z P(x) implies that P, Z Z,so | N| = p>. Then P,.Z = Z(N)
implies that N is abelian. Hence, N centralizes its subgroup W. But the
transitivity of N (P, ) implies that N is transitive on L —{x}. Thus, W = P(y)
fixes every line meeting L —{x}. Since Z is conjugate to W, Z must fix every line
meeting L — {y}, which is not the case.

Thus, t = p*> and | P| = p°.

Next note that P(x*) = 1. For otherwise, h is a power of p by (3.3), so h = p?
by (3.5i), whereas s*t/h =(s — 1)(t + 1)+ 1 by (3.3iv).

Hence, the transitivity of P on x* — L (see (2.2)) implies that Z is semiregular
on x* — L. Thus, for each L' on x, P(x) N P(L') contains a G,-conjugate Z' # Z
of Z. In fact, if P’ is a Sylow p-subgroup of G,;- such that P'(x) = P(x), then we
can choose Z'= Z(P’). Thus, Z(P(x)) has p*>+ 1 nontrivial subgroups, any two
meeting trivially. In particular, | Z(P(x))| = p°. But (P, P’) permutes p*+ 1 such
subgroups 2-transitively, so | Z(P(x))|= p*.

If | P(x)|= p°, then P(x).# 1, and this contradicts (2.1).

Thus, |P(x)|=p* and P(x) is elementary abelian. Moreover, |P(x)N
P(L)|=p>. Since P(x) is transitive on L —{x} and centralizes P(x) N P(y), we
have P(x)NP(y)=P(L*)=1. Thus, since |P(y)N P(L)|=p? necessarily
|P(L)|zp’ p’ so |P|zp” and |P.|=p’. Consequently, P,v»# 1 for some
M#L on x. By (2.1), Py N P(x)=1.

N(P(x)) induces the same 2-transitive representation on the p>+1 lines on x
and the p>+ 1 subgroups P(x)N P(L) of P(x). It thus induces a subgroup of
GL (4, p), 2-transitive on p* + 1 hyperplanes, and having a nontrivial p-subgroup
(induced by P..) fixing more than one such hyperplane. However, GL (4, p) has
no such subgroup.

Proof of Theorem 1.1 when p°| |G|

In view of the preceding lemmas, it remains to eliminate the case p |, p <1,
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and p*t; | G |. By (2.1iii), either t <p®and | P|=p>,or t =p*and | P|=p* or
p’.

Suppose first that ¢ < p®. Then P is semiregular on A(x). Hence, if y € L — {x}
thenP, = P(L) is semiregular on x*— L. Consequently, if u € x*— L, then P,
(which is nontrivial as otherwise p’>=|u®|=|x*— L|= pt) is semiregular on
x*—xu. In particular, Z =Z(P)= G(x). By (2.2), Z<P, so |Z|=p. But
P(L)<tP,so Z=P(L). Thus, Z = P(L), whenever x € L' # L. Consequently,
P, and Z are conjugate in G, (by (2.2)), so P, = P(x) N P(xu). Now P(x) has
t+1>p +1 distinct proper subgroups, so | P(x)|= p®=|P|. By (2.2ii), this is
impossible.

Thus, ¢ = p>. Suppose next that | P|= p*. Then once again, P is semiregular
onA(x), P,# 1foreach u € x*— L, P, is semiregular on x* — xu, and Z = G(x).
Moreover, |ZNP(L)|=p =|P.| by the semiregularity of P(L), and P, =
P(xu).. Thus, Z N P(L)= P(L). whenever x € L' # L. As above, we then have
P, = P(xu). conjugate to ZNP(L), so P, =P(x), |P(x)|Zp> and hence
| P: P(x)| = p. Once again, this contradicts (2.2ii).

Consequently, | P| = p®. Now | P, | = p for each w € A(x), while | P, | = p* for
each u € x*— L. Thus, P, fixes no points of x* — xu, so Z = P(x) once again.
Also, ZNP(L)#1. Since P(x*)=1 as in the proof of (5.3), ZNP(L) is
semiregular on x*— L. Thus, | ZNP(L)|=p.

For each u € x*— L, Z(P(x))N P(xu) contains a G,-conjugate of Z N P(L).
Thus, Z(P(x)) has p>+ 1 such subgroups, and | Z(P(x))| = p>. Since N(P(x))
permutes these subgroups 2-transitively, | Z(P(x))| = p*. But now | P: P(x)|=p
1s again ridiculous.

This completes the proof of (1.1) when p°|| G |.

6. The case p° ¥ |G|

We now consider the case p’ 4t |G| of Theorem 1.1. Certainly, p*| | G |
since |A(x)|= p®t. Thus, a Sylow p-subgroup P of G has order p?, and fixes
some point x. By (2.7), p £t + 1, s0 P fixes 1+ £ =2 lines on x. Let L be such a
line. P is semiregular on A(x), so P(L) is semiregular on x*— L.

LEMMA 6.1. €=1 or 3, so p[t—1 or t—3. If ¢ =3 then 3|p—1 and
N(P)/C(P)= SL(2,3).

Proor. By (2.2), N(P), is 2-transitive on the 1 + £ subgroups P(L). Hence, if
the lemma does not hold then ¢ =2 and N(P)/C(P) induces S; on these
subgroups. Then (2.6) implies ¢t = p + 2. Since N(P) acts irreducibly on P and
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1+1>1+¢g, P# P(x)and hence P(x)=1. Thus, G, acts on the lines through x
as a group of degree p + 3 and order divisible by p?, which is absurd since p# 3
here (as t# p’—p—1).

COMPLETION OF THE PROOF OF (1.1). By (6.1) and (2.7), t =2p +3 and ¢ = 3.
Then P has just 2 nontrivial orbits 0, and 0, of lines on x. Then the commutator
group N(P) fixes 0, and 0, and induces a metacyclic group in each 0, so N(P)"
induces the identity on both orbits by (6.1). N(P)" has an element g inverting P.
Then g normalizes P(L), so g € G(x). Now P =[P, g] =[P, G(x)] = G(x), so
1+ e =1+t This contradiction proves the theorem.
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