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GENERALIZED QUADRANGLES HAVING 
A PRIME PARAMETER* 

BY 

W I L L I A M  M. K A N T O R  

ABSTRACT 

Generalized quadrangles  ~ are studied in which s or t is prime and Aut  .9. has 
rank 3 on points. 

I. Introduction 

A generalized quadrangle ~ of order (s, t) consists of a set of points and lines, 

with each line on s + 1 points and each point on t + 1 lines, such that two points 

are on at most one line and a point not on a line is collinear with exactly one 

point of the line. We will study the case where s or t is prime and Aut ~ has 

rank 3 on points. 

THEOREM 1.1. Let ~ be a generalized quadrangle of order (p, t) with p prime 

and t > 1. Suppose G = Aut ~ has rank 3 on points. Then either t = p2_ p _ 1 

and p3.~lG I, or G-~PSp(4,  p) or PFU(4,  p) and ~ is one of the usual 

quadrangles associated with these groups, or p = 2, G = A6 and ~ is one of the 

usual quadrangles associated with PS,(4, 2). 

A group G having a BN-pair  whose Weyl group is D8 naturally acts as an 

automorphism group of a generalized quadrangle of order (s, t) with s > 1 and 

t > 1. Moreover,  (1 + s)(1 + t)(1 + st)sZt 2 divides [ G I. Thus, as an immediate 

consequence of (1.1) we have: 

COROLLARY 1.2. Let G be a finite group having BN-pair and Weyl group Ds. 

Suppose that [P: B l -  1 is a prime p for some maximal parabolic subgroup P. 

Then G has a normal subgroup H isomorphic to PSp(4, p) or PSU(4, p), with the 

usual BN-pair induced on H. 

t This research was supported in part by NSF grant  GP 37982X. 
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COROLLARY 1.3. Let G be a rank 3 group having subdegrees I, py, p2 with p a 

prime, p .~ y6, (y, 6 ) = 1, r a power of p, r > 1 and either (1 + ~ )r >= y or p = 2 and 

= 1. Then G can be regarded as acting on the singular points of a symplectic or 

orthogonal geometry over GF(p),  or on the singular lines of a 4-dimensional 

symplectic or unitary geometry over GF(p). 

Corollary 1.3 is a consequence of (1.1) and Kantor [4]. Further consequences 

of the preceding sort also follow from the latter paper. The present work 

originated in an attempt to push the rather elementary methods of [4] somewhat 

further. The proof of (1.1) requires little more than elementary group theory, 

combined with results of Higman [1], {2], [3]. The case t = p is especially simple; 

for both this reason, and later convenience, it has been presented separately in 

Section 4. 

The basic idea is to take a Sylow p-subgroup P of G, and then see how both its 

center and various point-and line-stabilizers in P must behave. The same 

methods yield the following result; the details are left to the reader. 

THEOREM 1.4. Let ~ be a generalized quadrangle of order (s, p) with p prime 

and s > 1. Suppose G = Aut ~ has rank 3 on points, p3l ] G 1, and either 

s ~  p 2 -  p -  1 or p "l J a I. Then G ~- PSp(4, p) or PFU(4,p) ,  and ~ is one of the 

usual quadrangles associated with these groups. 

We remark that there is a well-known quadrangle of order (3,5) for which 

331J Aut ~ [(see, e.g., Higman [2], p. 287); Aut ~ has rank 3 on points and rank 5 

on lines. 

Finally, we note that the methods presented here apply to other situations, 

such as rank 4 automorphism groups of generalized hexagons of order (p, p) with 

p prime. 

2. Preliminary results 

Let ~ be a generalized quadrangle of order (s, t). If x is a point, F(x) denotes 

the set of points y such that a line xy exists, x l =  {x} U F(x), and A(x) is the 

complement of xi .  We call x and y joined or adjacent if xy exists; and dually 

lines L and M are adjacent if L A M is a point. 

H ( x )  will denote the set of elements of H =< Aut ~ fixing each line on x, while 

H ( L )  is the pointwise stabilizer of L. 

LEMMA 2.1. Let ~ be a generalized quadrangle o[ order (s, t). 

(i) Suppose a subgroup H of Aut ~ fixes at least three points o[ some line and 
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at least three lines through some point. I f  no fixed point H is joined to all others, and 

ao fixed line meets all others, then the set of fixed points and lines of H form a 

sub-quadrangle of order (s', t') for some s' <- s and t' <= t. 

(ii) I f  ~ has a proper subquadrangle of order (s, t'), then t ~ st'. 

(iii) t 2>-_sands 2 >= t if s > l and t > l. 

PROOF. (i) is straightforward. To prove (ii) (which is due to Payne [6] and 

Thas [7]), take x outside of the subquadrangle ~ .  Then each of the t + 1 lines 

through x meets ~ at most once. Counting in two ways the pairs (y, L)  with 

y E L ,  x and y collinear, and y, L E ~ ,  we find that ( t + l ) ( t ' + l ) = > l +  

(s + 1)t '+ st '2 (the latter being the number of lines of ~i).  This implies that 

t >-_ st'. 

Finally, (iii) is Higman's inequality [2]. 

The second part of the following transitivity-boosting lemma is probably 

well-known; the proof of the first part has the same flavor as the one in Kantor 

[4]. 

LEMMA 2.2. Suppose G <= Aut ~ has rank 3 on points. Then 

(i) G~ is 2-transitive on the lines through x; and 

(ii) I f  (s, t + 1) = 1 and y E F(x), then Gxy is transitive on y~ - xy. 

PROOF. (i) Let x E L. Then G~/. contains a Sylow p-subgroup P of Gx for 

each prime p i t .  It suffices to show that for each p and P, each orbit L '~" of 

lines ~ L on x has length divisible by tp (the p-part of t). 

Suppose I L 'P I < tp for some such orbit. There exist points y E L - {x} and 

y ' E L ' - { x }  whose PL,=PLL, orbits have lengths_-<sr Thus, IP,,.,l>-_ 
] PL, [/s ~ > I P [/s ~ tp,, so [ P*: Pyy, [ < s ~tp = [ a (y)  Ip for a Sylow p-subgroup P* => 

Pyy, of Gy. Since y ' E  A(y) and Gy is transitive on A(y), this is impossible. 

(ii) Since (fr(x)l ,  la(x) l)  = ( s ( t  + 1), s t) = s, each Gx~-orbit on A(x) has length 

divisible by s2t/s = l y ~ -  xy [. 

REMARK. Note that the hypotheses of (2.2) guarantee that GL is 2-transitive 

on L. What (2.2) says is that a second 2-transitive group is also always available. 

LEMMA 2.3. The pointwise stabilizer G (x ~) of x • is semiregular on A(x), and 

I a(x )l It. 

PROOF. The first statement is (6.17) of Higman [2], and follows immediately 

from (2.1i). To prove the second one, let M be a line not on x, and set 

{y} = x • N M. Then each u ~ x • - xy is joined to some w ~ M -{y},  and hence 

<= = 1. 
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THEOREM 2.4. (Higman [1].) Assume G <= Aut ~ has rank 3 on points, and 

s = t = [G(x • [. Then ~ is isomorphic to the usual quadrangle for Sp(4, s), and 

G >- PSp (4, s). 

THEOREM 2.5. (Higman [3].) Assume G <-Aut ~ has rank 3 on points, 

s = t 2 and [G(x~)[ = t. Then ~ is isomorphic to the usual quadrangle for 

PSU(4, t), and G >- PSU(4, t). 

LEMMA 2.6. (Higman [2, (6.1)].) s2(1 + st)/(s + t) is an integer. 

COROLLARY 2.7. Suppose (s, t) = l, s > 1 and t > 1. 

(i) I f  s [ t +--1 then t = s 2 -  s - 1 .  

(ii) I f  s i t - 3  and 3 I s - 1  then t --- 2s + 3. 

(iii) I f  s i t - 2  then t = s + 2. 

PROOF. We will prove (ii); (i) and (iii) are similar. By (2.6), s + t Is 2 -  1. We 

can write s 2 - 1 = a ( s + t )  and t - 3 = f l s  for integers a and /3. Then - 1 -  

33 (mod s), so a - - - ( s -  1)/3 (mod s). Write a = ( ( s -  1)/3)+ sy. Then s 2 -  1 = 

(((s - 1)/3) + sy)(s + t) implies that 3' = 0 and 3(s + 1) = s + t, as required. 

3. Hyperbolic lines 

Let ~3 be any strongly regular graph with parameters n, k, l, A,/x. For each 

point x, F(x) will denote the set of points joined to x, and A(x) the set of 

points ~ x not joined to x. Write x • = {x} t3 F(x). The line xy, xf i  y, is defined by 

(3.1) x y =  ( q { w l [ x , y ~ w ~ }  = f - ) { w •  y~}. 

This line is called singular if y ~ F(x) and hyperbolic if y E A(x). 

LEMMA 3.2. (Higman [2, p. 282].) 

(i) Two adjacent points are on a unique singular line. 

(ii) Two non-adjacent points are on at most one hyperbolic line, and are on no 

singular line, if ~ is the point-graph of a generalized quadrangle. 

Consider the following hypothesis: 

(H) Each hyperbolic line has h + 1 points, and two distinct lines meet at most 

o n c e .  

This will be the case, for example, if (3.2ii) holds and Aut ~3 is transitive on 

pairs of non-adjacent points. 
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LEMMA 3.3. A s s u m e  (H). Then the following hold. 

(i) x is on l /h  hyperbolic lines. 

(ii) There are n l / h ( h  + 1) hyperbolic lines. 

(iii) h i k - A - 1 .  

(iv) I f  w ~ A(x) then w is on l /h  - (k  - Ix + 1) hyperbolic lines missing x • 

(v) There are l[I /h  - (k  - Ix + 1)]/(h + 1) hyperbolic lines missing x • 

PROOF. (i) and (ii) are easy. If y E U(x) then y •  is a union of 

hyperbolic lines with x removed; this implies (iii). 

To prove (iv), note that w is joined to Ix points of F(x). Let y be any of the 

remaining k - Ix points of F(x). If wy meets F(x) at a second point y '  : y, then 

by (H), y '  @ A(y) and wy = yy'. But now, y, y '  E x • implies that yy'  C_ x • and 

hence that w E x ~. 

Thus, w is on exactly k - I x  hyperbolic lines meeting x • By (i), this proves 

(iv). 
Finally, count the pairs (w, L )  with w E A ( x ) n  L, L a hyperbolic line, and 

L n x • = <h, in order to obtain (v). 

COROLLARY 3.4. I f  (H) holds, and Aut ~ is transitive on hyperbolic lines, then 

each hyperbolic line misses exactly l - h ( k  - Ix + 1) sets x • 

PROOF. By (3.3), the desired number is 

n .  l[I /h - ( k  - Ix + 1)](h + 1) -1 . (n l / h (h  + 1)) -1 . 

LEMMA 3.5. If (H) and (3.2ii) hold, then 

(i) x • contains sEt(t + 1 ) / h ( h  + 1) hyperbolic lines; and 

(ii) [G(x•  div idesh .  

PROOF. 

(i) Count the pairs (y, H )  with y ~ H Cx • and H a hyperbolic line. 

(ii) Higman [2, (6.17)]. 

4. The case s = t = p  

Theorem 1.1 is particularly easy when s = t = p  is prime. We may assume 

p > 2 .  Let P be a Sylow p-subgroup of G. Then P fixes some x and some 

(singular) line L on x. Moreover,  P is transitive on L -{x} ,  A(x) and x l -  L (by 

(2.2)). Set Z = Z ( P )  n P ( x )  n P ( L ) .  Since p3 = i a(x)l l l  G I, 1. 

Let w E A(x), and suppose Pw~ 1. Then Pw = P(wy)  if y ~ L n F(w). If now 

Z is transitive on the lines ~ L on y, then P~ =< G(y  • and Higman's result (2.4) 



Vol. 23, 1 9 7 6  GENERALIZED QUADRANGLES 13 

applies. Assume next that Z =< G(y) .  Then the transitivity of P shows that Z 

fixes every line meeting L. Hence,  Higman 's  result (2.4) applies to the dual of 

if G has rank 3 on lines. But by (2.2), if G does not have rank 3 on lines, then 

I Kp I =< P~ for a line g on w. This implies that I Px [ >= p2, so PKw ~ 1. Then, by 

(2.1), the set of fixed points and lines of PKw form a subquadrangle of order  

(p,p), which is absurd. 

Thus, we may assume [P t  = p3. Then no nontrivial p -e lement  can fix two 

nonadjacent  points. In particular, P(L)= Py is regular on x •  L. (Also, P is 

regular on A(x), so G has rank 3 on lines.) Since [ P (x) l  = p2, we see that P(x) 
has p + 1 subgroups of order  p, each fixing a unique line on x pointwise. Hence,  

by the Frattini argument,  N(P(x))x is 2-transitive on these p + 1 subgroups, and 

hence induces at least SL(2,p)  on P(x). 

Moreover,  I Z I  = p here, and Z = P(x) n P(L). Thus, Z = P (y )  would again 

permit  (2.4) to be applied to the dual of ~. It follows as above that N(P(L))L is 

2-transitive on the p + 1 subgroups of order p of P(L), and induces at least 

SL(2, p) on P(L). 
In view of the action of N(P(x))x on P(x) ,  there is a 2-element t E 

N(P(x))x n N(P(L)) which inverts P(x) and centralizes P(L)/Z. Then t nor- 

malizes each of the p + 1 subgroups of P(x) corresponding to the lines on x, and 

hence t E G(x). Similarly, there is a 2-element t ' E  N(P(L))L N N(P(x)) which 

inverts P(L) and centralizes P(x)/Z. By Sylow's theorem, we may assume that 

(t, t')<= S(P(x))O N(P(L)) is a 2-group. 

Now tt' centralizes Z and inverts P/Z and tt' fixes some line L~ ~ L on x. 

Then also tt' fixes one of the p points of L 1 -  {x}, and the transitivity of Z on 

L 1 -  {x} shows that tt'E G(LI). Dually, tt 'E G ( y ) f o r  some y E L -{x} .  (Recall 

that Z is transitive on the lines ~ L on y.) Thus, (2.1i) implies that the set of fixed 

points and lines of tt' is a subquadrangle of order  (p,p) .  This is ridiculous, and 

the case s = t = p  is completed.  

5. T h e  case  s = p a n d  p3[ I G [ 

Let ~ and G be as in Theorem 1.1. Let P be a Sylow p-subgroup of G. Then 

P fixes some point x. Set Z = Z(P). 
It is easy to handle the case p = 2 (since t _-< p2 by (2.1)). We may thus assume 

p > 2. By Section 4, we may also assume p ~  t. 

Throughout this section we will assume p31] G [. 

LEMMA 5.1. t > p. 
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PROOF. Suppose t < p .  Then P<=G(x). As [A(x)[=p2t,  P w ~ l  for some 

w ~ A(x). Certainly, Pw = P(wy)  for each y E x I f3 w • By (2.1i), the set of fixed 

points and lines of P~ form a subquadrangle of order (p, t), which is absurd. 

LEMMA 5.2. p It. 

PROOF. Suppose p Xt. By (2.1) and (5.1), p < t < p  2. Also, for some 

w ~ A(x), P ~  1 and P .  is Sylow in Gx~. 

Consider first the possibility p [ t + 1. Here no nontrivial subgroup of P can fix 

elementwise a subquadrangle of ~. For, by (2.1) such a quadrangle would have 

order (p, t,) with pt, <= t < p2 and p [ tl + 1, so t, = p - 1. However,  by (2.6) no 

quadrangle of order  (p, p - 1) can exist. 

On the other hand, [ P K I ~ p 2  for one of the pt 2 lines K not on x. Then 

P ( K )  # 1, and we may assume w E K. Now P ( K )  fixes at least p lines L '  on x, 

and at least p on w. Since w is joined to some point of L '  - {x}, this contradicts 

(2.1) and the preceding paragraph. 

From now on we may assume p . (  t + 1. Then p fixes some line L on x. 

Moreover,  the set ~T of fixed po.ints and lines of Pw from a subquadrangle, 

necessarily of order  (p, tl) for some t, => 1. Here t, -= t (mod p), while ptl ~ t < p2 

by (2.1). Also, since Pw is Sylow in Gxw, N(Pw) is transitive on the ordered pairs 

of non-adjacent points of ~1. 

We claim that [P [ = p3.  For suppose [ P [ => p ' .  Then 1 ~ PwL < P~ for some 

line L '  on x. The set of fixed points and lines of P~L, forms a subquadrangle 

~2 D ~1 of ~ of order  (p, t2) for some tz. By (2.1), p2t~ < ptz < t < p2, which is 

impossible. 

Thus, [ p [ = p 3  and [ P w [ = p .  But the transitivity of N ( P , ) i m p l i e s  that 

p~l [ N( P , ) / .  Hence P, <=Z(P). 
Since [xi-Ll=pt#O (modp2), [P, [>p2  for some u E x •  Then P. is 

not conjugate in G to any P,,  so P, fixes no point of x ~ - xu. Thus, Z ( P )  fixes 

xu. There are thus exactly tl + 1 lines xu with [ P(xu)[ >= p2. If v is any point of 

x ~ not on any of these lines, then I v~ I < pt < p, so P ~  1 and Z ( P )  <= C(P(xv) )  

implies that P(xv)  fixes a second line on x pointwise, and hence determines a 

subquadrangle of order  (p, t2), say. But this time, p _---t2, and this contradicts 

(2.1). 

By (5.2), we now know P fixes some line L on x. Let tp denote the p-part  of t. 

LEMMA 5.3. I f  p2t~ divides [ G [, then the conclusions of (1.1) hold. 

PROOF. By (5.2), p It. Then I P[_- > p' ,  and I Pf_- > p if t = f .  By (2.1), t =< p2. 

We have I a(x)l  = p:t =-- o (modp3). Let w ~ A(x). Then p" >= p2t >= [ w e [ >= p3, 

so[w ~ ]is p%. In particular, [P~ 1_-> tp. Note that P ,  = e ( y w ) i f { y }  = L fq w ~. 
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We claim that P~ fixes no point of A(y). For otherwise, by (2.1) Pw fixes 

elementwise a subquadrangle of order  (p, tl), where pt, <-_- t <-_ p2 and p [ t~. Thus, 

t = p2, so I P~ I =->P:. Now t -  t~ <p2  implies that, for some line M ~  L on x, 

P~ > P ~ M ~ I .  Then P ,u  fixes more than p + l  lines through x;  by (2.1), it 

determines a subquadrangle of oi'der (p, t2) with pt2 <= t = p2 and t~ > t,. This 

contradiction proves our claim. 

Thus, P~ fixes only points of y 1. Since w and y are arbitrary, Z = Z ( P )  fixes 

each point of L. 

Let u E x ~ - L. Since pt <_pS, by (2.2) each P-orbit  on x I - L has length ptp. 

Thus, I P: P- [ = ptp. Clearly, P, has an orbit ~ {xu} of lines K on u of length =< tp. 

Thus, IP:PKI IP:P,,r ~ 2 = = Ptp, so P r ~  1. 
We claim that all fixed lines of PK are adjacent to xu. For otherwise, by (2.1) 

the set ~ of fixed points and lines of PK is a subquadrangle of order  (p, h) (as 

P r  --< P(xu)  fixes at least p + 1 lines on x). Here p2>= t >-_ pt~ by (2.1), while p I t~. 

Thus, t = p2 and t~ = p. By (2.1), P,~ 

through x it moves, so [PK I = P. Thus, 

adjacent to L. Moreover,  N~(PK) is 

intersecting these lines with x ~) also on 

must be semiregular on the t - t l  lines 

I K~ I --> P~, so K ~ consists of all lines not 

transitive on K e fq  ~1, and hence (by 

(x I - L)  r ~ .  Since L can be any line of 

~1, it follows that N(PK) has rank 3 on the dual of ~ , .  Moreover,  p4 X J N(Pr )  g' I 

since P-~ = 1. By Section 4, this is impossible, and our claim is proved. 

Thus, Z <= C(PK) must fix xu. As u ~ x l -  L was arbitrary, we now have 

Z <=P(x)n P(L).  

Let G(L  l) denote the set of elements of G fixing every line adjacent to L. 

Suppose that Z fq G ( L •  1. By (2.3) (applied to the dual of ~ ) ,  I G(L~)I IP. 
Thus, G(LI)<-_ Z. Clearly, G(L• ~- GL. Set E = (G(M•  ~ M). Then E ' ~  

G(x)  is elementary abelian, and Gx acts 2-transitively on the t + 1 > p  + 1 

groups G(MI) .  In particular, ]El>=p 3. But GL(3, p) has no such 2-transitive 

subgroup since t + 1 < p 2 + p  + 1 (Mitchell [5]). Thus [E  I=>P'. If now t < p 2  

then I PI  _-> pS. Then I Pw I_- > p2, so Pw > PwK/1 for some lini~ K adjacent to yw. 

(Note that I Pw [~1 G ((yw)~)] .) As usual, PwK determines a subquadrangle, and 

(2.1) produces a contradiction. Thus, t = p2, so [xuPI = p2. By (2.5), we may 

assume that G does not have rank 3 on lines. Then I K~ I --< p4 for each line K not 

adjacent to L, so I PK I --> p2. As usual, (2.1) implies that for w ~ K fq A(x), the set 

of fixed points and lines of PKw form a quadrangle of order  (p, p). Hence, again 

by (2.1), IPrw[=p,  IPKI<-p 2, and hence [ P l = p  6. Now IP:P(x)J<=p z-- 

I xu 1" [ = t shows that no subgroup of P can fix exactly p + 1 lines on x, whereas 

P~,~ is such a subgroup. 

Thus, we may assume that Z N G(L  ~) = 1, and (eventually) will derive a 
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contradiction from this assumption. Since P is transitive on L -{x} ,  Z t3 P (y )  -- 

1 for each y E L - { x } .  Since P(L) is Sylow in G(L) ,  we can find gEGL 
such that p s _ > p ( L )  and Pg is Sylow in GyL. Set W = Z L  Then W<-P(L). 
Moreover,  Pw < P(L ) <-_ Cp(W). 

Recall that all fixed points of Pw are in yi .  Since Pw fixes L and wy pointwise, 

while N(Pw) is transitive on ordered pairs of non-adjacent fixed points of P~, we 

must have ]N: Pw [_->[L-{y}[ . [  w y - { y } [  = p2, where X = Ne(P~). 
We can now prove t = p2. For suppose t < p2. By (2.1), P~ is semiregular on 

the lines # L through x, so [ Pw [ = p and ] P [ = p4. In particular, m -- Cp(Pw) and 

[ e :  N]  _-< p, Also, P~ ;g P(x) implies that P~ ~ Z, so [ N[ -- p3. Then P~Z < Z(N) 
implies that N is abelian. Hence, N centralizes its subgroup W. But the 

transitivity of N(Pw) implies that N is transitive on L - { x } .  Thus, W _-< P (y )  

fixes every line meeting L - {x}. Since Z is conjugate to W, Z must fix every line 

meeting L -  {y}, which is not the case. 

Thus, t = p2 and ] P [ > p6.  

Next note that P(x • = 1. For otherwise, h is a power of p by (3.3), so h = p2 

by (3.50, whereas s2t/h > (s - 1)(t + 1) + 1 by (3.3iv). 

Hence,  the transitivity of P on x l -  L (see (2.2)) implies that Z is semiregular 

on x • - L. Thus, for each L '  on x, P(x) t3 P(L') contains a Gx-conjugate Z ' #  Z 

of Z. In fact, if P '  is a Sylow p-subgroup of GxL, such that P'(x) = P(x) ,  then we 

can choose Z ' =  Z(P'). Thus, Z(P(x)) has p2+ 1 nontrivial subgroups, any two 

meeting trivially. In particular, [ Z(P(x))[ > p3. But (P, P')  permutes p2 + 1 such 

subgroups 2-transitively, so [ Z(P(x))[ => p4. 

If [P(x)[  > pS, then P(x)w# 1, and this contradicts (2.1). 

Thus, [P(x)[=p 4 and P(x) is elementary abelian. Moreover,  [ P ( x ) N  

P ( L ) [  = p3. Since P(x) is transitive on L - {x}  and centralizes P(x)f3 P(y) ,  we 

have P(x) fq P(y) <= P(L*) = 1. Thus, since [ P(y) f3 P(L) [  = p3 ,  necessarily 

[e(L)l>-_p3.p 3, s o  [el>-_p 7 and [P~ [=>p3. Consequently, P~M#I  for some 

M #  L on x. By (2.1), P~M fq P(x) = 1. 
N(P(x)) induces the same 2-transitive representation on the p2+ 1 lines on x 

and the p2+ 1 subgroups P(x)f3 P(L) of P(x). It thus induces a subgroup of 

GL(4, p), 2-transitive on p2+ 1 hyperplanes, and having a nontrivial p-subgroup 

(induced by PwM)fixing more than one such hyperplane. However,  GL(4, p) has 

no such subgroup. 

Proof of Theorem I.I when p3[ [G[ 

In view of the preceding lemmas, it remains to eliminate the case p [ t, p < t, 
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and p2t~.~ I G I. By (2.1iii), either t <p2  and I P [ =  p3, or t = p2 and [PI  = p4 or 
pS. 

Suppose first that t < p2. Then P is semiregular on A(x). Hence, if y E L - {x} 

thenPy = P ( L )  is semiregular on x l -  L. Consequently, if u E x I - L, then P, 

(which is nontrivial as otherwise p3 = I ue I-<-Ix ~ -  L I = pt) is semiregular on 

x i - x u .  In particular, Z = Z ( P ) < = G ( x ) .  By (2.2), Z < P ,  so I Z l = p .  But 

P(L)  <1 P, so Z <= P(L) .  Thus, Z = P(L)L, whenever x C L '  # L. Consequently, 

P, and Z are conjugate in Gx (by (2.2)), so P, = P(x)  n P(xu).  Now P(x)  has 

t + 1 > p + 1 distinct proper  subgroups, so I P (x ) l  --> p3 = I P 1. By (2.2ii), this is 

impossible. 

Thus, t = p2. Suppose next that ]P [ = p4. Then once again, P is semiregular 

on A(x), P , ~  1 for each u ~ x • - L, Pu is semiregular on x ~ - xu, and Z <= G(x ). 

Moreover,  IznP(L)l=p=lP.I by the semiregularity of P(L) ,  and P, = 

P(xu)L. Thus, Z n P ( L )  = P(L)L, whenever x E L '  ~ L. As above, we then have 

P, = P(xu)L conjugate to Z N P ( L ) ,  so Pu ~ P ( x ) ,  l e(x)l_->p 3, and hence 

I P:  P(x)] <=p. Once again, this contradicts (2.2ii). 

Consequently, I PI = pS. Now [Pw I = p for each w E A(x), while [P, [ = p2 for 

each u E x ~ -  L. Thus, P, fixes no points of x ~ - xu, so Z <= P(x )  once again. 

Also, Z A P ( L ) # I .  Since P(x• =1  as in the proof of (5.3), Z N P ( L ) i s  

semiregular on x ~ -  L. Thus, ] Z  n P(L)I  = p. 

For each u E x ~ - L, Z ( P ( x  )) n P(xu ) contains a Gx-conjugate of Z n P(L ). 

Thus, Z ( P ( x ) )  has p2+ 1 such subgroups, a n d [ Z ( P ( x ) )  I >= p3. Since N( P( x ) )  

permutes these subgroups 2-transitively, I z(P(x))l --> p'. But now [ P: P(x) l  --< p 

is again ridiculous. 

This completes the proof of (1.1) when p31iG I. 

6. The case p3 ~ IG I 

We now consider the case p3X I G I of Theorem 1.1. Certainly, p 2 [ I G  I 

since IA(x)l =p2t. Thus, a Sylow p-subgroup P of G has order p2, and fixes 

some point x. By (2.7), p .~ t + 1, so P fixes 1 + e => 2 lines on x. Let L be such a 

line. P is semiregular on A(x), so P ( L )  is semiregular on x •  L. 

LEMMA 6.1. e = l  or 3, so p i t - - 1  or t --3.  I f  e = 3  then 3 1 p - 1  and 

N ( P ) / C ( P )  ~- SL (2, 3). 

PROOF. By (2.2), N(P)x is 2-transitive on the 1 + e subgroups P(L) .  Hence, if 

the lemma does not hold then e = 2 and N ( P ) / C ( P )  induces $3 on these 

subgroups. Then (2.6) implies t = p + 2. Since N ( P )  acts irreducibly on P and 
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1 + t > 1 + e, P ~  P(x)  and hence  P(x)  = 1. Thus,  G~ acts on  the l ines through x 

as a group of  degree  p + 3 and order  divisible by p2, which  is absurd since p ~  3 

here (as t ~  pZ_ P _ 1). 

COMPLETION OF THE PROOF OF (1.1). By  (6.1) and (2.7), t = 2p + 3 and e = 3. 

Then  P has just 2 nontrivial  orbits 0~1 and ~2 of  lines on  x. Then  the c o m m u t a t o r  

group N(P)'  fixes 0~1 and C2, and induces  a metacycl ic  group in each C, so N ( P ) "  

induces  the identity on  both  orbits by (6.1). N(P)"  has an e l e m e n t  g invert ing P. 

Then  g normal izes  P ( L ) ,  so g @ G(x) .  N o w  P = [P, g] = [P, G ( x ) ]  ~ G(x) ,  so 

1 + e = 1 + t. This  contradict ion proves  the theorem.  

REFERENCES 

1. D. G. Higman, Finite permutation groups of rank3, Math. Z. 86 (1964), 145-156. 
2. D. G. Higman, Partial geometries, generalized quadrangles and strongly regular graphs, in Atti 

cony. geom. comb. appl., Perugia, 1971, pp. 263-293. 
3. D. G. Higman, Characterizations of families of rank 3 permutation groups by the subdegrees 

III (unpublished) 
4. W. M. Kantor, Rank 3 characterizations of the classical geometries (to appear in J. Algebra). 
5. H. H. Mitchell, Determination of the ordinary and modular groups, Trans. Amer. Math. Soc. 

12 (1911), 207-242. 
6. S. E. Payne, A restriction on the parameters of a subqaadrangle, Bull. Amer. Math. Soc. 79 

(1973), 747-748. 
7. J. A. Thas, 4-gonal subconfigurations of a given 4-gonal configuration, Rend. Accad. Naz. 

Lincei 53 (1972), 520-530. 

UNIVERSITY OF OREGON 
EUGENE, OREGON, U.S.A. 


