GENERALIZED QUADRANGLES HAVING A PRIME PARAMETER^{\dagger}

BY

WILLIAM M. KANTOR

ABSTRACT

Generalized quadrangles $\underline{2}$ are studied in which s or t is prime and Aut $\underline{2}$ has rank 3 on points.

1. Introduction

A generalized quadrangle \mathcal{Q} of order (s, t) consists of a set of points and lines, with each line on s + 1 points and each point on t + 1 lines, such that two points are on at most one line and a point not on a line is collinear with exactly one point of the line. We will study the case where s or t is prime and Aut \mathcal{Q} has rank 3 on points.

THEOREM 1.1. Let \mathcal{Q} be a generalized quadrangle of order (p, t) with p prime and t > 1. Suppose $G = \operatorname{Aut} \mathcal{Q}$ has rank 3 on points. Then either $t = p^2 - p - 1$ and $p^3 \not \mid G \mid$, or $G \cong PSp(4, p)$ or $P\Gamma U(4, p)$ and \mathcal{Q} is one of the usual quadrangles associated with these groups, or p = 2, $G = A_6$ and \mathcal{Q} is one of the usual quadrangles associated with $PS_p(4, 2)$.

A group G having a BN-pair whose Weyl group is D_8 naturally acts as an automorphism group of a generalized quadrangle of order (s, t) with s > 1 and t > 1. Moreover, $(1 + s)(1 + t)(1 + st)s^2t^2$ divides |G|. Thus, as an immediate consequence of (1.1) we have:

COROLLARY 1.2. Let G be a finite group having BN-pair and Weyl group D_8 . Suppose that |P:B|-1 is a prime p for some maximal parabolic subgroup P. Then G has a normal subgroup H isomorphic to PSp(4, p) or PSU(4, p), with the usual BN-pair induced on H.

[†]This research was supported in part by NSF grant GP 37982X.

Received November 14, 1974

COROLLARY 1.3. Let G be a rank 3 group having subdegrees 1, $p\gamma$, p^2 with p a prime, $p \nmid \gamma \delta$, $(\gamma, \delta) = 1$, r a power of p, r > 1 and either $(1 + \delta)r \ge \gamma$ or p = 2 and $\delta = 1$. Then G can be regarded as acting on the singular points of a symplectic or orthogonal geometry over GF(p), or on the singular lines of a 4-dimensional symplectic or unitary geometry over GF(p).

Corollary 1.3 is a consequence of (1.1) and Kantor [4]. Further consequences of the preceding sort also follow from the latter paper. The present work originated in an attempt to push the rather elementary methods of [4] somewhat further. The proof of (1.1) requires little more than elementary group theory, combined with results of Higman [1], [2], [3]. The case t = p is especially simple; for both this reason, and later convenience, it has been presented separately in Section 4.

The basic idea is to take a Sylow p-subgroup P of G, and then see how both its center and various point-and line-stabilizers in P must behave. The same methods yield the following result; the details are left to the reader.

THEOREM 1.4. Let \mathcal{Q} be a generalized quadrangle of order (s, p) with p prime and s > 1. Suppose $G = \operatorname{Aut} \mathcal{Q}$ has rank 3 on points, $p^3 ||G|$, and either $s \neq p^2 - p - 1$ or $p^4 ||G|$. Then $G \cong PSp(4, p)$ or $P\Gamma U(4, p)$, and \mathcal{Q} is one of the usual quadrangles associated with these groups.

We remark that there is a well-known quadrangle of order (3, 5) for which $3^3 || \text{Aut } \underline{\mathcal{Q}} |$ (see, e.g., Higman [2], p. 287); Aut $\underline{\mathcal{Q}}$ has rank 3 on points and rank 5 on lines.

Finally, we note that the methods presented here apply to other situations, such as rank 4 automorphism groups of generalized hexagons of order (p, p) with p prime.

2. Preliminary results

Let \mathcal{Q} be a generalized quadrangle of order (s, t). If x is a point, $\Gamma(x)$ denotes the set of points y such that a line xy exists, $x^{\perp} = \{x\} \cup \Gamma(x)$, and $\Delta(x)$ is the complement of x^{\perp} . We call x and y joined or adjacent if xy exists; and dually lines L and M are adjacent if $L \cap M$ is a point.

H(x) will denote the set of elements of $H \leq \text{Aut } \mathcal{Q}$ fixing each line on x, while H(L) is the pointwise stabilizer of L.

LEMMA 2.1. Let 2 be a generalized quadrangle of order (s, t). (i) Suppose a subgroup H of Aut 2 fixes at least three points of some line and at least three lines through some point. If no fixed point H is joined to all others, and no fixed line meets all others, then the set of fixed points and lines of H form a sub-quadrangle of order (s', t') for some $s' \leq s$ and $t' \leq t$.

- (ii) If \mathcal{Q} has a proper subquadrangle of order (s, t'), then $t \ge st'$.
- (iii) $t^2 \ge s$ and $s^2 \ge t$ if s > 1 and t > 1.

PROOF. (i) is straightforward. To prove (ii) (which is due to Payne [6] and Thas [7]), take x outside of the subquadrangle \mathcal{Q}_1 . Then each of the t + 1 lines through x meets \mathcal{Q}_1 at most once. Counting in two ways the pairs (y, L) with $y \in L$, x and y collinear, and y, $L \in \mathcal{Q}_1$, we find that $(t+1)(t'+1) \ge 1 + (s+1)t' + st'^2$ (the latter being the number of lines of \mathcal{Q}_1). This implies that $t \ge st'$.

Finally, (iii) is Higman's inequality [2].

The second part of the following transitivity-boosting lemma is probably well-known; the proof of the first part has the same flavor as the one in Kantor [4].

LEMMA 2.2. Suppose $G \leq \text{Aut } \mathcal{Q}$ has rank 3 on points. Then (i) G_x is 2-transitive on the lines through x; and (ii) If (s, t+1) = 1 and $y \in \Gamma(x)$, then G_{xy} is transitive on $y^{\perp} - xy$.

PROOF. (i) Let $x \in L$. Then G_{xL} contains a Sylow *p*-subgroup *P* of G_x for each prime $p \mid t$. It suffices to show that for each *p* and *P*, each orbit L'^P of lines $\neq L$ on *x* has length divisible by t_p (the *p*-part of *t*).

Suppose $|L'^{P}| < t_{p}$ for some such orbit. There exist points $y \in L - \{x\}$ and $y' \in L' - \{x\}$ whose $P_{L'} = P_{LL'}$ orbits have lengths $\leq s_{p}$. Thus, $|P_{L'yy'}| \geq |P_{L'}|/s_{p}^{2} > |P|/s_{p}^{2}t_{p'}$, so $|P^{*}: P_{yy'}| < s_{p}^{2}t_{p} = |\Delta(y)|_{p}$ for a Sylow *p*-subgroup $P^{*} \geq P_{yy'}$ of G_{y} . Since $y' \in \Delta(y)$ and G_{y} is transitive on $\Delta(y)$, this is impossible.

(ii) Since $(|\Gamma(x)|, |\Delta(x)|) = (s(t+1), s^2t) = s$, each G_{xy} -orbit on $\Delta(x)$ has length divisible by $s^2t/s = |y^{\perp} - xy|$.

REMARK. Note that the hypotheses of (2.2) guarantee that G_L is 2-transitive on L. What (2.2) says is that a second 2-transitive group is also always available.

LEMMA 2.3. The pointwise stabilizer $G(x^{\perp})$ of x^{\perp} is semiregular on $\Delta(x)$, and $|G(x^{\perp})||t$.

PROOF. The first statement is (6.17) of Higman [2], and follows immediately from (2.1 i). To prove the second one, let M be a line not on x, and set $\{y\} = x^{\perp} \cap M$. Then each $u \in x^{\perp} - xy$ is joined to some $w \in M - \{y\}$, and hence $G(x^{\perp})_{M} \leq G(x^{\perp})_{w} = 1$.

THEOREM 2.4. (Higman [1].) Assume $G \leq \operatorname{Aut} \mathcal{Q}$ has rank 3 on points, and $s = t = |G(x^{\perp})|$. Then \mathcal{Q} is isomorphic to the usual quadrangle for Sp(4, s), and $G \geq \operatorname{PSp}(4, s)$.

THEOREM 2.5. (Higman [3].) Assume $G \leq \operatorname{Aut} \mathcal{Q}$ has rank 3 on points, $s = t^2$ and $|G(x^{\perp})| = t$. Then \mathcal{Q} is isomorphic to the usual quadrangle for PSU(4, t), and $G \geq PSU(4, t)$.

LEMMA 2.6. (Higman [2, (6.1)].) $s^{2}(1 + st)/(s + t)$ is an integer.

COROLLARY 2.7. Suppose (s, t) = 1, s > 1 and t > 1.

(i) If $s | t \pm 1$ then $t = s^2 - s - 1$.

(ii) If s | t-3 and 3 | s-1 then t = 2s+3.

(iii) If s | t - 2 then t = s + 2.

PROOF. We will prove (ii); (i) and (iii) are similar. By (2.6), $s + t | s^2 - 1$. We can write $s^2 - 1 = \alpha(s + t)$ and $t - 3 = \beta s$ for integers α and β . Then $-1 \equiv 3\alpha \pmod{s}$, so $\alpha \equiv (s - 1)/3 \pmod{s}$. Write $\alpha = ((s - 1)/3) + s\gamma$. Then $s^2 - 1 = (((s - 1)/3) + s\gamma)(s + t)$ implies that $\gamma = 0$ and 3(s + 1) = s + t, as required.

3. Hyperbolic lines

Let \mathscr{G} be any strongly regular graph with parameters n, k, l, λ, μ . For each point x, $\Gamma(x)$ will denote the set of points joined to x, and $\Delta(x)$ the set of points $\neq x$ not joined to x. Write $x^{\perp} = \{x\} \cup \Gamma(x)$. The line $xy, x \neq y$, is defined by

(3.1)
$$xy = \bigcap \{w^{\perp} | x, y \in w^{\perp}\} = \bigcap \{w^{\perp} | w \in x^{\perp} \bigcap y^{\perp}\}.$$

This line is called singular if $y \in \Gamma(x)$ and hyperbolic if $y \in \Delta(x)$.

LEMMA 3.2. (Higman [2, p. 282].)

(i) Two adjacent points are on a unique singular line.

(ii) Two non-adjacent points are on at most one hyperbolic line, and are on no singular line, if \mathcal{D} is the point-graph of a generalized quadrangle.

Consider the following hypothesis:

(H) Each hyperbolic line has h + 1 points, and two distinct lines meet at most once.

This will be the case, for example, if (3.2ii) holds and Aut \mathscr{G} is transitive on pairs of non-adjacent points.

LEMMA 3.3. Assume (H). Then the following hold.

- (i) x is on l/h hyperbolic lines.
- (ii) There are nl/h(h+1) hyperbolic lines.
- (iii) $h \mid k \lambda 1$.
- (iv) If $w \in \Delta(x)$ then w is on $l/h (k \mu + 1)$ hyperbolic lines missing x^{\perp} .
- (v) There are $l[l/h (k \mu + 1)]/(h + 1)$ hyperbolic lines missing x^{\perp} .

PROOF. (i) and (ii) are easy. If $y \in \Gamma(x)$ then $y^{\perp} \cap \Delta(x)$ is a union of hyperbolic lines with x removed; this implies (iii).

To prove (iv), note that w is joined to μ points of $\Gamma(x)$. Let y be any of the remaining $k - \mu$ points of $\Gamma(x)$. If wy meets $\Gamma(x)$ at a second point $y' \neq y$, then by (H), $y' \in \Delta(y)$ and wy = yy'. But now, $y, y' \in x^{\perp}$ implies that $yy' \subseteq x^{\perp}$, and hence that $w \in x^{\perp}$.

Thus, w is on exactly $k - \mu$ hyperbolic lines meeting x^{\perp} . By (i), this proves (iv).

Finally, count the pairs (w, L) with $w \in \Delta(x) \cap L$, L a hyperbolic line, and $L \cap x^{\perp} = \phi$, in order to obtain (v).

COROLLARY 3.4. If (H) holds, and Aut G is transitive on hyperbolic lines, then each hyperbolic line misses exactly $l - h(k - \mu + 1)$ sets x^{\perp} .

PROOF. By (3.3), the desired number is

$$n \cdot l[l/h - (k - \mu + 1)](h + 1)^{-1} \cdot (nl/h(h + 1))^{-1}$$
.

LEMMA 3.5. If (H) and (3.2ii) hold, then (i) x^{\perp} contains $s^{2}t(t+1)/h(h+1)$ hyperbolic lines; and (ii) $|G(x^{\perp})|$ divides h.

PROOF.

- (i) Count the pairs (y, H) with $y \in H \subset x^{\perp}$ and H a hyperbolic line.
- (ii) Higman [2, (6.17)].

4. The case s = t = p

Theorem 1.1 is particularly easy when s = t = p is prime. We may assume p > 2. Let P be a Sylow p-subgroup of G. Then P fixes some x and some (singular) line L on x. Moreover, P is transitive on $L - \{x\}$, $\Delta(x)$ and $x^{\perp} - L$ (by (2.2)). Set $Z = Z(P) \cap P(x) \cap P(L)$. Since $p^3 = |\Delta(x)| ||G|$, $Z \neq 1$.

Let $w \in \Delta(x)$, and suppose $P_w \neq 1$. Then $P_w = P(wy)$ if $y \in L \cap \Gamma(w)$. If now Z is transitive on the lines $\neq L$ on y, then $P_w \leq G(y^{\perp})$ and Higman's result (2.4)

applies. Assume next that $Z \leq G(y)$. Then the transitivity of P shows that Z fixes every line meeting L. Hence, Higman's result (2.4) applies to the dual of \mathcal{Q} if G has rank 3 on lines. But by (2.2), if G does not have rank 3 on lines, then $|K^p| \leq p^2$ for a line K on w. This implies that $|P_K| \geq p^2$, so $P_{Kw} \neq 1$. Then, by (2.1), the set of fixed points and lines of P_{Kw} form a subquadrangle of order (p, p), which is absurd.

Thus, we may assume $|P| = p^3$. Then no nontrivial *p*-element can fix two nonadjacent points. In particular, $P(L) = P_y$ is regular on $x^{\perp} - L$. (Also, *P* is regular on $\Delta(x)$, so *G* has rank 3 on lines.) Since $|P(x)| = p^2$, we see that P(x)has p + 1 subgroups of order *p*, each fixing a unique line on *x* pointwise. Hence, by the Frattini argument, $N(P(x))_x$ is 2-transitive on these p + 1 subgroups, and hence induces at least SL(2, *p*) on P(x).

Moreover, |Z| = p here, and $Z = P(x) \cap P(L)$. Thus, $Z \leq P(y)$ would again permit (2.4) to be applied to the dual of \mathcal{Q} . It follows as above that $N(P(L))_L$ is 2-transitive on the p + 1 subgroups of order p of P(L), and induces at least SL(2, p) on P(L).

In view of the action of $N(P(x))_x$ on P(x), there is a 2-element $t \in N(P(x))_x \cap N(P(L))$ which inverts P(x) and centralizes P(L)/Z. Then t normalizes each of the p + 1 subgroups of P(x) corresponding to the lines on x, and hence $t \in G(x)$. Similarly, there is a 2-element $t' \in N(P(L))_L \cap N(P(x))$ which inverts P(L) and centralizes P(x)/Z. By Sylow's theorem, we may assume that $\langle t, t' \rangle \leq N(P(x)) \cap N(P(L))$ is a 2-group.

Now tt' centralizes Z and inverts P/Z and tt' fixes some line $L_1 \neq L$ on x. Then also tt' fixes one of the p points of $L_1 - \{x\}$, and the transitivity of Z on $L_1 - \{x\}$ shows that $tt' \in G(L_1)$. Dually, $tt' \in G(y)$ for some $y \in L - \{x\}$. (Recall that Z is transitive on the lines $\neq L$ on y.) Thus, (2.1i) implies that the set of fixed points and lines of tt' is a subquadrangle of order (p, p). This is ridiculous, and the case s = t = p is completed.

5. The case s = p and $p^3 ||G|$

Let \mathcal{Q} and G be as in Theorem 1.1. Let P be a Sylow p-subgroup of G. Then P fixes some point x. Set Z = Z(P).

It is easy to handle the case p = 2 (since $t \le p^2$ by (2.1)). We may thus assume p > 2. By Section 4, we may also assume $p \ne t$.

Throughout this section we will assume $p^3 | |G|$.

LEMMA 5.1. t > p.

PROOF. Suppose t < p. Then $P \leq G(x)$. As $|\Delta(x)| = p^2 t$, $P_w \neq 1$ for some $w \in \Delta(x)$. Certainly, $P_w = P(wy)$ for each $y \in x^{\perp} \cap w^{\perp}$. By (2.1i), the set of fixed points and lines of P_w form a subquadrangle of order (p, t), which is absurd.

LEMMA 5.2. $p \mid t$.

PROOF. Suppose $p \nmid t$. By (2.1) and (5.1), $p < t < p^2$. Also, for some $w \in \Delta(x)$, $P_w \neq 1$ and P_w is Sylow in G_{xw} .

Consider first the possibility p | t + 1. Here no nontrivial subgroup of P can fix elementwise a subquadrangle of \mathcal{Q} . For, by (2.1) such a quadrangle would have order (p, t_1) with $pt_1 \leq t < p^2$ and $p | t_1 + 1$, so $t_1 = p - 1$. However, by (2.6) no quadrangle of order (p, p - 1) can exist.

On the other hand, $|P_K| \ge p^2$ for one of the pt^2 lines K not on x. Then $P(K) \ne 1$, and we may assume $w \in K$. Now P(K) fixes at least p lines L' on x, and at least p on w. Since w is joined to some point of $L' - \{x\}$, this contradicts (2.1) and the preceding paragraph.

From now on we may assume $p \nmid t + 1$. Then p fixes some line L on x. Moreover, the set \mathcal{Q}_1 of fixed points and lines of P_w from a subquadrangle, necessarily of order (p, t_1) for some $t_1 \ge 1$. Here $t_1 \equiv t \pmod{p}$, while $pt_1 \le t < p^2$ by (2.1). Also, since P_w is Sylow in G_{xw} , $N(P_w)$ is transitive on the ordered pairs of non-adjacent points of \mathcal{Q}_1 .

We claim that $|P| = p^3$. For suppose $|P| \ge p^4$. Then $1 \ne P_{wL} < P_w$ for some line L' on x. The set of fixed points and lines of $P_{wL'}$ forms a subquadrangle $\mathcal{Q}_2 \supset \mathcal{Q}_1$ of \mathcal{Q} of order (p, t_2) for some t_2 . By (2.1), $p^2 t_1 < pt_2 < t < p^2$, which is impossible.

Thus, $|P| = p^3$ and $|P_w| = p$. But the transitivity of $N(P_w)$ implies that $p^3 ||N(P_w)|$. Hence $P_w \leq Z(P)$.

Since $|x^{\perp} - L| = pt \neq 0 \pmod{p^2}$, $|P_u| \geq p^2$ for some $u \in x^{\perp} - L$. Then P_u is not conjugate in G to any P_w , so P_u fixes no point of $x^{\perp} - xu$. Thus, Z(P) fixes xu. There are thus exactly $t_1 + 1$ lines xu with $|P(xu)| \geq p^2$. If v is any point of x^{\perp} not on any of these lines, then $|v^p| < pt < p$, so $P_v \neq 1$ and $Z(P) \leq C(P(xv))$ implies that P(xv) fixes a second line on x pointwise, and hence determines a subquadrangle of order (p, t_2) , say. But this time, $p \leq t_2$, and this contradicts (2.1).

By (5.2), we now know P fixes some line L on x. Let t_p denote the p-part of t.

LEMMA 5.3. If $p^2 t_p^2$ divides |G|, then the conclusions of (1.1) hold.

PROOF. By (5.2), $p \mid t$. Then $\mid P \mid \geq p^4$, and $\mid P \mid \geq p^6$ if $t = p^2$. By (2.1), $t \leq p^2$. We have $\mid \Delta(x) \mid = p^2 t \equiv 0 \pmod{p^3}$. Let $w \in \Delta(x)$. Then $p^4 \geq p^2 t \geq \mid w^P \mid \geq p^3$, so $\mid w^P \mid \text{is } p^2 t_p$. In particular, $\mid P_w \mid \geq t_p$. Note that $P_w = P(yw)$ if $\{y\} = L \cap w^\perp$. We claim that P_w fixes no point of $\Delta(y)$. For otherwise, by (2.1) P_w fixes elementwise a subquadrangle of order (p, t_1) , where $pt_1 \leq t \leq p^2$ and $p \mid t_1$. Thus, $t = p^2$, so $\mid P_w \mid \geq p^2$. Now $t - t_1 < p^2$ implies that, for some line $M \neq L$ on x, $P_w > P_{wM} \neq 1$. Then P_{wM} fixes more than p + 1 lines through x; by (2.1), it determines a subquadrangle of order (p, t_2) with $pt_2 \leq t = p^2$ and $t_2 > t_1$. This contradiction proves our claim.

Thus, P_w fixes only points of y^{\perp} . Since w and y are arbitrary, Z = Z(P) fixes each point of L.

Let $u \in x^{\perp} - L$. Since $pt \leq p^3$, by (2.2) each *P*-orbit on $x^{\perp} - L$ has length pt_p . Thus, $|P: P_u| = pt_p$. Clearly, P_u has an orbit $\neq \{xu\}$ of lines *K* on *u* of length $\leq t_p$. Thus, $|P: P_K| = |P: P_{uK}| \leq Pt_{p_p}^2$ so $P_K \neq 1$.

We claim that all fixed lines of P_{κ} are adjacent to xu. For otherwise, by (2.1) the set \mathcal{Q}_1 of fixed points and lines of P_{κ} is a subquadrangle of order (p, t_1) (as $P_{\kappa} \leq P(xu)$ fixes at least p + 1 lines on x). Here $p^2 \geq t \geq pt_1$ by (2.1), while $p \mid t_1$. Thus, $t = p^2$ and $t_1 = p$. By (2.1), P_{κ} must be semiregular on the $t - t_1$ lines through x it moves, so $\mid P_{\kappa} \mid = p$. Thus, $\mid K^{P} \mid \geq p^{5}$, so K^{P} consists of all lines not adjacent to L. Moreover, $N_{P}(P_{\kappa})$ is transitive on $K^{P} \cap \mathcal{Q}_{1}$, and hence (by intersecting these lines with x^{\perp}) also on $(x^{\perp} - L) \cap \mathcal{Q}_{1}$. Since L can be any line of \mathcal{Q}_{1} , it follows that $N(P_{\kappa})$ has rank 3 on the dual of \mathcal{Q}_{1} . Moreover, $p^{4} \nmid |N(P_{\kappa})^{\mathcal{Z}_{1}}|$ since $P_{\mathcal{R}}^{\mathcal{Z}_{1}} = 1$. By Section 4, this is impossible, and our claim is proved.

Thus, $Z \leq C(P_{\kappa})$ must fix xu. As $u \in x^{\perp} - L$ was arbitrary, we now have $Z \leq P(x) \cap P(L)$.

Let $G(L^{\perp})$ denote the set of elements of G fixing every line adjacent to L. Suppose that $Z \cap G(L^{\perp}) \neq 1$. By (2.3) (applied to the dual of \mathcal{Q}), $|G(L^{\perp})| | p$. Thus, $G(L^{\perp}) \leq Z$. Clearly, $G(L^{\perp}) \leq G_L$. Set $E = \langle G(M^{\perp}) | x \in M \rangle$. Then $E \leq G(x)$ is elementary abelian, and G_x acts 2-transitively on the t+1 > p+1groups $G(M^{\perp})$. In particular, $|E| \geq p^3$. But GL(3, p) has no such 2-transitive subgroup since $t+1 < p^2 + p+1$ (Mitchell [5]). Thus $|E| \geq p^4$. If now $t < p^2$ then $|P| \geq p^5$. Then $|P_w| \geq p^2$, so $P_w > P_{wK} \neq 1$ for some line K adjacent to yw. (Note that $|P_w| \leq |G((yw)^{\perp})|$.) As usual, P_{wK} determines a subquadrangle, and (2.1) produces a contradiction. Thus, $t = p^2$, so $|xu^P| = p^2$. By (2.5), we may assume that G does not have rank 3 on lines. Then $|K^P| \leq p^4$ for each line K not adjacent to L, so $|P_K| \geq p^2$. As usual, (2.1) implies that for $w \in K \cap \Delta(x)$, the set of fixed points and lines of P_{Kw} form a quadrangle of order (p, p). Hence, again by (2.1), $|P_{Kw}| = p$, $|P_K| \leq p^2$, and hence $|P| = p^6$. Now $|P:P(x)| \leq p^2 =$ $|xu^P| = t$ shows that no subgroup of P can fix exactly p+1 lines on x, whereas P_{Kw} is such a subgroup.

Thus, we may assume that $Z \cap G(L^{\perp}) = 1$, and (eventually) will derive a

contradiction from this assumption. Since P is transitive on $L - \{x\}$, $Z \cap P(y) = 1$ for each $y \in L - \{x\}$. Since P(L) is Sylow in G(L), we can find $g \in G_L$ such that $P^s \ge P(L)$ and P^s is Sylow in G_{yL} . Set $W = Z^s$. Then $W \le P(L)$. Moreover, $P_w \le P(L) \le C_P(W)$.

Recall that all fixed points of P_w are in y^{\perp} . Since P_w fixes L and wy pointwise, while $N(P_w)$ is transitive on ordered pairs of non-adjacent fixed points of P_w , we must have $|N: P_w| \ge |L - \{y\}| \cdot |wy - \{y\}| = p^2$, where $N = N_P(P_w)$.

We can now prove $t = p^2$. For suppose $t < p^2$. By (2.1), P_w is semiregular on the lines $\neq L$ through x, so $|P_w| = p$ and $|P| = p^4$. In particular, $N = C_P(P_w)$ and $|P:N| \leq p$. Also, $P_w \not\leq P(x)$ implies that $P_w \not\leq Z$, so $|N| = p^3$. Then $P_w Z \leq Z(N)$ implies that N is abelian. Hence, N centralizes its subgroup W. But the transitivity of $N(P_w)$ implies that N is transitive on $L - \{x\}$. Thus, $W \leq P(y)$ fixes every line meeting $L - \{x\}$. Since Z is conjugate to W, Z must fix every line meeting $L - \{y\}$, which is not the case.

Thus, $t = p^2$ and $|P| \ge p^6$.

Next note that $P(x^{\perp}) = 1$. For otherwise, h is a power of p by (3.3), so $h = p^2$ by (3.5i), whereas $s^2t/h \ge (s-1)(t+1)+1$ by (3.3iv).

Hence, the transitivity of P on $x^{\perp} - L$ (see (2.2)) implies that Z is semiregular on $x^{\perp} - L$. Thus, for each L' on x, $P(x) \cap P(L')$ contains a G_x -conjugate $Z' \neq Z$ of Z. In fact, if P' is a Sylow p-subgroup of $G_{xL'}$ such that P'(x) = P(x), then we can choose Z' = Z(P'). Thus, Z(P(x)) has $p^2 + 1$ nontrivial subgroups, any two meeting trivially. In particular, $|Z(P(x))| \ge p^3$. But $\langle P, P' \rangle$ permutes $p^2 + 1$ such subgroups 2-transitively, so $|Z(P(x))| \ge p^4$.

If $|P(x)| \ge p^5$, then $P(x)_w \ne 1$, and this contradicts (2.1).

Thus, $|P(x)| = p^4$ and P(x) is elementary abelian. Moreover, $|P(x) \cap P(L)| = p^3$. Since P(x) is transitive on $L - \{x\}$ and centralizes $P(x) \cap P(y)$, we have $P(x) \cap P(y) \le P(L^{\perp}) = 1$. Thus, since $|P(y) \cap P(L)| = p^3$, necessarily $|P(L)| \ge p^3 \cdot p^3$, so $|P| \ge p^7$ and $|P_w| \ge p^3$. Consequently, $P_{wM} \ne 1$ for some $M \ne L$ on x. By (2.1), $P_{wM} \cap P(x) = 1$.

N(P(x)) induces the same 2-transitive representation on the $p^2 + 1$ lines on x and the $p^2 + 1$ subgroups $P(x) \cap P(L)$ of P(x). It thus induces a subgroup of GL(4, p), 2-transitive on $p^2 + 1$ hyperplanes, and having a nontrivial p-subgroup (induced by P_{wM}) fixing more than one such hyperplane. However, GL(4, p) has no such subgroup.

Proof of Theorem 1.1 when $p^3 ||G|$

In view of the preceding lemmas, it remains to eliminate the case $p \mid t, p < t$,

and $p^{2}t_{p}^{2} \not\mid G \mid$. By (2.1iii), either $t < p^{2}$ and $\mid P \mid = p^{3}$, or $t = p^{2}$ and $\mid P \mid = p^{4}$ or p^{5} .

Suppose first that $t < p^2$. Then P is semiregular on $\Delta(x)$. Hence, if $y \in L - \{x\}$ then $P_y = P(L)$ is semiregular on $x^{\perp} - L$. Consequently, if $u \in x^{\perp} - L$, then P_u (which is nontrivial as otherwise $p^3 = |u^P| \leq |x^{\perp} - L| = pt$) is semiregular on $x^{\perp} - xu$. In particular, $Z = Z(P) \leq G(x)$. By (2.2), Z < P, so |Z| = p. But $P(L) \triangleleft P$, so $Z \leq P(L)$. Thus, $Z = P(L)_L$ whenever $x \in L' \neq L$. Consequently, P_u and Z are conjugate in G_x (by (2.2)), so $P_u = P(x) \cap P(xu)$. Now P(x) has t + 1 > p + 1 distinct proper subgroups, so $|P(x)| \geq p^3 = |P|$. By (2.2ii), this is impossible.

Thus, $t = p^2$. Suppose next that $|P| = p^4$. Then once again, P is semiregular on $\Delta(x)$, $P_u \neq 1$ for each $u \in x^{\perp} - L$, P_u is semiregular on $x^{\perp} - xu$, and $Z \leq G(x)$. Moreover, $|Z \cap P(L)| = p = |P_u|$ by the semiregularity of P(L), and $P_u = P(xu)_L$. Thus, $Z \cap P(L) = P(L)_L$ whenever $x \in L' \neq L$. As above, we then have $P_u = P(xu)_L$ conjugate to $Z \cap P(L)$, so $P_u \leq P(x)$, $|P(x)| \geq p^3$, and hence $|P:P(x)| \leq p$. Once again, this contradicts (2.2ii).

Consequently, $|P| = p^5$. Now $|P_w| = p$ for each $w \in \Delta(x)$, while $|P_u| = p^2$ for each $u \in x^{\perp} - L$. Thus, P_u fixes no points of $x^{\perp} - xu$, so $Z \leq P(x)$ once again. Also, $Z \cap P(L) \neq 1$. Since $P(x^{\perp}) = 1$ as in the proof of (5.3), $Z \cap P(L)$ is semiregular on $x^{\perp} - L$. Thus, $|Z \cap P(L)| = p$.

For each $u \in x^{\perp} - L$, $Z(P(x)) \cap P(xu)$ contains a G_x -conjugate of $Z \cap P(L)$. Thus, Z(P(x)) has $p^2 + 1$ such subgroups, and $|Z(P(x))| \ge p^3$. Since N(P(x)) permutes these subgroups 2-transitively, $|Z(P(x))| \ge p^4$. But now $|P:P(x)| \le p$ is again ridiculous.

This completes the proof of (1.1) when $p^3 ||G|$.

6. The case $p^3 \not\mid |G|$

We now consider the case $p^3 \not\mid G \mid$ of Theorem 1.1. Certainly, $p^2 \mid |G|$ since $|\Delta(x)| = p^2 t$. Thus, a Sylow *p*-subgroup *P* of *G* has order p^2 , and fixes some point *x*. By (2.7), $p \not\mid t + 1$, so *P* fixes $1 + \varepsilon \ge 2$ lines on *x*. Let *L* be such a line. *P* is semiregular on $\Delta(x)$, so *P*(*L*) is semiregular on $x^{\perp} - L$.

LEMMA 6.1. $\varepsilon = 1$ or 3, so $p \mid t-1$ or t-3. If $\varepsilon = 3$ then $3 \mid p-1$ and $N(P)/C(P) \succeq SL(2,3)$.

PROOF. By (2.2), $N(P)_x$ is 2-transitive on the $1 + \varepsilon$ subgroups P(L). Hence, if the lemma does not hold then $\varepsilon = 2$ and N(P)/C(P) induces S_3 on these subgroups. Then (2.6) implies t = p + 2. Since N(P) acts irreducibly on P and

 $1 + t > 1 + \varepsilon$, $P \neq P(x)$ and hence P(x) = 1. Thus, G_x acts on the lines through x as a group of degree p + 3 and order divisible by p^2 , which is absurd since $p \neq 3$ here (as $t \neq p^2 - p - 1$).

COMPLETION OF THE PROOF OF (1.1). By (6.1) and (2.7), t = 2p + 3 and $\varepsilon = 3$. Then P has just 2 nontrivial orbits \mathcal{O}_1 and \mathcal{O}_2 of lines on x. Then the commutator group N(P)' fixes \mathcal{O}_1 and \mathcal{O}_2 , and induces a metacyclic group in each \mathcal{O}_i , so N(P)''induces the identity on both orbits by (6.1). N(P)'' has an element g inverting P. Then g normalizes P(L), so $g \in G(x)$. Now $P = [P, g] \leq [P, G(x)] \leq G(x)$, so $1 + \varepsilon = 1 + t$. This contradiction proves the theorem.

REFERENCES

1. D. G. Higman, Finite permutation groups of rank 3, Math. Z. 86 (1964), 145-156.

2. D. G. Higman, Partial geometries, generalized quadrangles and strongly regular graphs, in Atti conv. geom. comb. appl., Perugia, 1971, pp. 263–293.

3. D. G. Higman, Characterizations of families of rank 3 permutation groups by the subdegrees III (unpublished)

4. W. M. Kantor, Rank 3 characterizations of the classical geometries (to appear in J. Algebra).

5. H. H. Mitchell, Determination of the ordinary and modular groups, Trans. Amer. Math. Soc. 12 (1911), 207-242.

6. S. E. Payne, A restriction on the parameters of a subquadrangle, Bull. Amer. Math. Soc. 79 (1973), 747-748.

7. J. A. Thas, 4-gonal subconfigurations of a given 4-gonal configuration, Rend. Accad. Naz. Lincei 53 (1972), 520-530.

UNIVERSITY OF OREGON

EUGENE, OREGON, U.S.A.